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ABSTRACT

FORMATION CONTROL AND ROBUSTNESS ANALYSIS OF

TIME-DELAYED AGENTS

By

Andres F. Rivera

January 2019

This thesis considers the formation control problem of a group of homogeneous

non-holonomic agents in the presence of two kinds of delays, a time delay in the sensing

feedback channel and a time delay in the agent communication network. The agents are

assumed to communicate using a fixed and directed communication topology. The forma-

tion control problem is tackled using consensus protocols; this work proposes a new con-

sensus protocol that allows for the existence of leader agents (agents that do not receive

state information from its neighbors) within the formation, and the algebraic form of the

distributed forcing function that solves the formation regulation problem. The time- de-

layed stability analysis of this formation is analyzed using the CTCR (Cluster Treatment

of Characteristic Roots) method under the SDS (Spectral Delay Space) domain. Sufficient

conditions for the stability of the time-delayed formation control system are presented.

The methodology is implemented and validated with a numerical example evaluating the

formation regulation and dynamic formation trajectory tracking capabilities of the scheme,

along with a Monte Carlo experiment validating the time- delay robustness assessment.

The results of the analysis of this methodology show that the sensing delay can drive the

effective stability margin of the multi-agent system. We present an example where the

communication delay margin is infinite for a finite range of sensing delays. The example

emphasizes the need for the explicit consideration of sensing delays in the design of robust

formations of agents and the methodology discussed in this thesis adequately addresses

such considerations.
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CHAPTER 1

INTRODUCTION

1.1 Multi-Agent System Control

The area of cooperative control of multi-agent systems has attracted a lot of re-

search in recent decades 1 due to the increased need for engineered systems capable of

performing tasks of increasing complexity where a system composed of a single agent is

unable to meet the performance characteristics. In this context, an agent represents an

arbitrary individual dynamic system, and a multi-agent system (MAS) represents a collec-

tion of such agents, where their cooperation renders increased benefits as defined by their

application. Compared to single-agent systems, MAS often achieve greater efficiency and

increased capabilities when performing their tasks [1, 2]. In literature, we can find the fol-

lowing applications: A constellation of Earth-orbiting spacecraft flying in formation to per-

form synthetic aperture radar (SAR) measurements [3], a formation of Unmanned Aerial

Vehicles (UAV) for military reconnaissance missions, or civilian applications such as vege-

tation growth tracking, topographic analysis, fire monitoring among others [4]. While the

applications include widely different agents and objectives, the fundamental approaches to

the coordination of multiple robots, aircraft or spacecraft are very similar: they all require

the coordination of the system’s agents to accomplish an objective.

The traditional approach to the design of multiple agent systems involves analyz-

ing the dynamics of the individual agents and designing robust control laws that guarantee

stability and meet a particular performance criteria, such as reference tracking or regula-

tion. The process of coordinating the agents of the system is achieved by introducing a

centralized controller, often called commander or supervisor, that collects the state infor-

1Search results in the scholar citation search engine Google Scholar for the keywords
"multi-agent system" show more than 1 million results since the year 2000 and 800
thousand results since the year 2010.
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mation of all the agents in the system and computes a set of commands that allow each

individual agent to achieve their individual target [5]. This type of control architecture

is adequate when the number of agents is small and the control computational effort is

sufficiently small to be performed by a monolithic central entity, however, as the scale of

the system increases, the centralized approach imposes large communication and computa-

tional resource requirements on the centralized computer, rendering the problem unfeasi-

ble.

A competing approach that does not suffer from the scalability constraints of the

centralized control approach involves distributing the communication and decision-making

load to each of the individual agents; this approach is called distributed control and has

been largely motivated by the technological advancements in sensor, communication and

processing resource miniaturization. It is important to note those individual agents are

typically characterized by having limited communication and processing resources and the

analysis of the distributed control problem often involves considering the effects of the re-

source restrictions.

The research community has produced a wide gamut of approaches toward achiev-

ing distributed cooperative control, including: model predictive [6], receding horizon [7],

observer-based [8], and finally consensus-based techniques [1, 9, 10].

1.2 The Role of Consensus and Time Delays in Distributed MAS Control

Consensus has been identified as a critical concept to the study of cooperative sys-

tems, the primary goal of this section is to introduce the concept of consensus problems

and their relevance to the control of MAS’.

In a strict sense, information consensus means reaching "agreement" by the agents

in the system to a common value or variable that depends on the state of all agents. A

consensus protocol is the rule that determines the interaction of the agents and its neighbors[10].

The existence of an information interchange network is implied in the definition of the

2
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FIGURE 1.1. MAS example - trailing formation of Landsat-7 and EO-1
satellites [11].

consensus protocol. The agents of the system agree on key pieces of information enabling

them to work together in a coordinated manner. The agreement variables could be, but

are not necessarily, those associated with the physical state of the system, including posi-

tion, velocity, attitude, and so on. In order to exchange information and take control deci-

sions, the agents must be equipped with sensing and communication capabilities, and pro-

cessing units to interpret and determine suitable control actions. Based on the information

acquired by the sensors, information is exchanged in accordance to a consensus protocol.

Intuitively, it can be inferred that the design of the consensus protocol drives the dynamic

behavior of the overall system, and its analysis and implementation are fundamental parts

of the control problem.

We present an illustrative example of a system of n agents, with moment of inertia

I, rotating about a fixed axis trying to synchronize their angular position θi {i ∈ N∗
n, i ≤

n} or heading in 2-d space. The first derivative of the heading, also called angular veloc-

ity, of the agent is represented by ω. The state of each agent is x⃗i = [θ, ω], this system is

3
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FIGURE 1.2. Consensus MAS control: synchronizing heading angle.

governed by second-order linear system (1.1).

˙⃗xi =

0 1

0 0

 x⃗i +

0
1
I

ui (1.1)

Assuming all the agents communicate a single variable θi, a linear consensus proto-

col where each agent i compares its current angular position against the angular position

of the other n − 1 agents in the system can be defined as follows:

ui = −θi +
n∑

j ̸=i

θj (1.2)

The consensus protocol equation (1.2) will determine the time evolution of the angular po-

sition of the agents. If the consensus problem is solved, the state of the individual agents

will be driven to a common value. In this simplified example, the concept of information

flow was introduced under the assumption that all agents communicate with one another.

In reality, most systems don’t behave this way and a mathematical representation of the

communication topology must be introduced.

A particularly powerful representation of the information flow can be found in al-

gebraic graph theory. The communication topology is described as a directed graph G =

(V , E) where each vertex vi in set V corresponds to an agent in the system, and each edge

eij = (vi, vj) ∈ E corresponds to a directed communication link between agenti and j. A

4
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graph can be concisely represented by its adjacency matrix, defined in Equation 1.3.

A = [aij] ∈ Rn×n {aij = 1 | (vi, vj) ∃ E , aij = 0 | (vi, vj)∄ E} (1.3)

The framework introduced in Chapter 2 allows us to describe the MAS by means of linear

operators and matrices.

Additionally, a fundamental consideration in the analysis of networked systems is

the corrupting effect of time delays. Time delays typically degrade the performance of the

control system and have a direct influence on its stability. In networked conditions, time

delays are determined by the complexity of the communication topology, the congestion of

the network, and the characteristics of the communication protocol for example, Bluetooth

RFCOMM, Ethernet, RS-232, and SpaceWire, among others [12]. Another source of de-

lays is associated with the sensing and processing capabilities of the agents. Depending on

the agents’ processing and communication network capabilities, designing robust consensus

protocols with explicit analysis of the influence of time delays is a fundamental task in the

control problem.

1.3 Problem Statement

This thesis describes the analysis and design process of consensus protocols for the

formation control problem, with particular emphasis in the exact analysis and influence

of communication and input/processing time delays, and its implementation on a robotic

platform composed of a homogeneous set of differential drive robots. This robotic platform

can be modeled by the dynamics of a unicycle, where the system can be described by the

following state z = [x, y, θ], with inputs corresponding to the linear velocity and angular

velocity in the out-of-plane direction u = [v, ω]. This is described geometrically in Figure

1.3.

5
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FIGURE 1.3. Unicycle at position x,y heading θ, linear velocity v and angular
velocity ω.

The equations of motion of a unicycle are the following:

˙⃗z =


ẋi

ẏi

θ̇i

 =


cos(θi) 0

sin(θi) 0

0 1


vi

ωi

 (1.4)

The dynamic system is non-linear and subject to nonholonomic constraints. The unicycle

has three degrees of freedom, but its motion is restricted by the roll without slipping condi-

tion, and can only move in the direction of its heading, or rotate about the axis normal to

the plane of motion.

In the formation control problem it is desired for the MAS to achieve a particular

formation shape. It is classified in a manner similar to the classic control problem. In the

formation regulation problem, the formation shape remains stationary or with a constant

velocity. In the formation tracking problem, it is desired for the formation to track an arbi-

trary reference signal or path while maintaining formation.

Consensus protocols can be used to couple the states of the agents and satisfy the

regulation or formation tracking control problem. Considering the effect of time delays, in

its most general form, the consensus function can be described as a function of the delayed

6
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states and a function in time to drive the individual agents towards their position in the

formation ϕ.

ui(t) = f(zi(t − τi), ..., zn(t − τn), ϕi(t)) (1.5)

The non-linear system can be expressed as a function of the vector of the states of

all agents x⃗ and the vector of individual input consensus functions u⃗:

˙⃗x = A(x⃗, u⃗) (1.6)

A review of the theory required to analyze the MAS described by Equations 1.4, 1.5 and

1.6 will be developed in Chapter 2. The design procedure, analysis of the control scheme

and simulation examples will be described in Chapters 3 and 4.

1.4 Literature Review

The area of consensus research has been studied for a long time, starting with its

introduction in computer science in the area of distributed computing. Its use in the con-

text of dynamic systems and control theory started with the work of Borkar and Varaiya

[13]. It was first used in a modern context by Jadbabaie, Lin and Morse [14] in terms of

consensus protocols where he analyzed Vicseck’s swarming model [15] . The theoretical

framework for a systematic treatment of the consensus problem in networked dynamic

systems was proposed by Olfati-Saber and Murray [10], their work introduced the graph

theoretical representation of consensus systems, and introduced their Kronecker multiplica-

tion representation. In that seminal paper, they highlight the spectral properties of Graph

Laplacians and their connection to the convergence of consensus and alignment algorithms

[16], they also introduce the analysis for consensus protocols with a single uniform time

delay. This work, however, was originally scoped to systems of first order integrators. Ren

and Beard [17] and Feng, Xu and Zhang [18], have expanded on Olfati-Saber and Mur-

7
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ray’s work to include results for higher order systems, its applications to multi-vehicle con-

trol by Ren and Beard [1], and applications to the unicycle problem [19]. In the area of

swarm control, Olfati-Saber [20] used consensus protocols to solve the flocking problem in

a similar fashion, Xiao et al. [21] developed a methodology for the design of formations.

Both methods rely on non-linear consensus protocols, this choice complicates the analysis

of the system. The flocking problem is one of two fundamental distributed control prob-

lems where all agents are required to move in the same direction with the same speed, the

second kind, is the rendezvous problem, where all agents are required to reach a common

location.

Most authors have identified the role of time delays in the consensus problem, how-

ever, few have done an exact and exhaustive study of its effect. In Olfati-Saber and Mur-

ray’s original paper, they correctly identify the analysis of delayed consensus as a frequency

response analysis, and use Nyquist’s criterion to define the stability bound for the single-

delay, first-order system. The case with second order dynamics and switching topologies

was analyzed by Qin, Gao and Zheng [22]; however, this work used the Lyapunov-Krasovskii

functional methodology [23], which is conservative in nature, requires the solution of diffi-

cult linear matrix inequalities and does not provide an exact assessment of the stability

of the system. The work of Cepeda-Gomez and Olgac applies the paradigm of the Cluster

Treatment of Characteristic Roots, CTCR in short, to analyze different forms of leader-

less and virtual leader consensus protocols subject to input delays and time-delayed com-

munications. This paradigm uses the D-Subdivision and a holographic transformation to

describe the exact and complete stability map of a linear time invariant multiple time de-

layed system (LTI-MTDS) system. The CTCR method has been the subject of multiple

research papers since its introduction by Olgac and Sipahi [25]. Its study has revealed sev-

eral important characteristics of the general class of multiple, rationally independent, time-

delayed systems, including: the discovery of the bounds of imaginary spectra by Gao and

8
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Olgac [26], the introduction of the concept of the Spectral Delay Space by Fazelinia, Sipahi

and Olgac [27] and the discovery of the novel delay-scheduling control method [28]. This

methodology reveals counterintuitive results, showing that in certain cases, stability can

be maintained after increasing the time delays above a certain threshold. It is generally as-

sumed that in order to guarantee the stability of a system, the time delays have to be kept

under a static marginal boundary, but the exhaustive analysis of the time-delay stability

picture reveals this assumption is invalid. Finally, Cepeda-Gomez and Perico [29] utilize

their work in delayed linear consensus protocols to the formation control problem of non-

holonomic agents.

1.5 Motivation and Contributions

In Cepeda-Gomez and Perico’s work [29], the authors utilize the concepts of input-

output feedback linearization and a general methodology for the decoupling of the time-

delayed linear consensus proportional-derivative feedback system to drive the agents to-

wards a static formation shape. The authors analyze the complete stability picture of

the system in the case where there are two rationally independent uniform communica-

tion time delays, one in the proportional feedback channel and one in the derivative feed-

back channel. They assume that the agents are not subject to cognitive or sensing delays.

This assumption is primarily driven by characterizing the agents as capable of acquiring

their own state and processing the consensus information in a negligible amount of time.

In literature, experimental platforms used for large swarms of robots tend to be low-cost

platforms with processing and sensing constraints, in addition to the communication con-

straints previously considered [30, 31].

To the best of our knowledge, the study of formations of non-holonomic agents with

sensing, processing and communication constraints has not been explored. This is the pri-

mary motivation for the development of this thesis. In Chapter 3, we describe a method-

ology for the analysis and design of formations of non-holonomic agents through linear

9
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consensus protocols. We extend the existing decentralized formation control consensus

protocol and propose a novel form that allows for the existence of physical leader agents.

We prove that this novel protocol solves the consensus problem and perform an exhaustive

analysis of the robustness of the protocol to sensing and communication time delays. In

the process, we complement the work of Cepeda-Gomez and Olgac [32] and define addi-

tional conditions for the factorization property that enables the time-delay stability assess-

ment. We find that depending on the communication topology and the control gains, the

sensing delay is a significant factor in the stability picture of the control system, and can

drive the effective delay margin. This finding emphasizes the fact that an analysis of time-

delay robustness focused only on communication constraints is incomplete. The extension

of the consensus protocol to include physical leaders (agents that don’t receive state infor-

mation from the rest of the formation) allows us to define tracking goals in a global frame

of reference. We analyze the stability conditions of the time-delayed consensus system of

non-holonomic agents and find the marginal stability points of sample topologies. The for-

mation control problem is tackled by finding a time-domain factor to decouple the system

inputs and drive the agents independently. This factor depends solely on the dynamics

of the agents and the target state information of the local communication neighborhood

of each agent. This enables us to define the formation shape and dynamic formation in a

decentralized manner. We account for the sensing delay in the input-output feedback lin-

earization process by introducing a local non-linear predictor. The predictor uses an inter-

nal non-linear model of the plant to predict the delay-free response of each of the agents.

In the methodology presented, the predictor is implemented in a decentralized manner by

each of the agents. In Chapter 4, we implement the methodology outlined in Chapter 3

and present simulation results that validate the approach, including a sensitivity analysis

of the system to various time delays via a Monte Carlo experiment.

10
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CHAPTER 2

PRELIMINARIES

2.1 Time-Delayed Linear Consensus Protocols and Algebraic Graph Properties

As introduced in Section 1.2, a communication topology can be represented by the

directed graph G = (V, E), with the set of nodes V = 1, 2, ..n and the set of edges E ⊂

V × V . An agent i sharing information with agent j is represented by en = (vi, vj), an edge

from i −→ j. The set of neighboring agents of agent i is denoted as:

Ni = {j ∈ V : (i, j) ∈ E} (2.1)

This section is a summary of the general framework and main results found by Olfati-

Saber and Murray [10], with the addition of some general remarks in literature that fol-

lowed.

Utilizing the notation, we reformulate Equation (1.2), as an n-order linear system.

Each agent is described by the first-order dynamics ẋi = ui.

ẋi =
∑

j∈Ni

(xj(t) − xi(t)) + ci(t), xi(0) = zi ∈ R, ci(t) = 0. (2.2)

The dynamics of the time-delayed MAS in 2.2 can be written as:

ẋi = −Lx(t − τ) (2.3)

Where L = [lij] is the graph Laplacian of the network and its elements are defined as fol-

lows:

lij =


|Ni| , i = j

−1 , j ∈ Ni

(2.4)

The cardinality of set Ni denotes the number of neighbors interacting with agent i, or the

11
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v1 v2

v3

FIGURE 2.1. Strongly connected digraph composed of three nodes.

in − degree of vertex i. According to the definition of the graph Laplacian, this matrix is

positive-semidefinite, because the sum of all of its rows ∑j lij = 0. By Gershgorin’s circle

theorem [33], each eigenvalue λi of the matrix will lay at the union of the circles centered

at aii, with a radius given by the sum of the absolute values of the off-diagonal terms.

Di =

λ ∈ C : |z − |Ni|| ≤
∑
j∈N

|lij|

 (2.5)

These regions overlap and the entire spectrum lies in the disk corresponding to the maxi-

mum degree of the matrix.

D = {λ ∈ C : |z − |Nmax|| ≤ |Nmax|} (2.6)

If the digraph is strongly connected, which means any node i can be reached by following

a directed path from any other node j, one of its eigenvalues is guaranteed to be λi = 0.

This eigenvalue corresponds to the scaled unity eigenvector 1 = α[1, 1, 1, ..], this vector

is a member of the null-space of L , L(L1 = 0). This eigenvector is also called the group

decision value. In the state-space this means the system has an equilibrium point in the

form x∗ = α1 [10]. An example of a strongly connected graph is show in Figure 2.1.

In a connected graph that does not meet the strongly connected condition, x∗ is

an equilibrium point of the system in Equation (2.3), unique up to scalar multiples. The

number of connected components of a digraph is equal to the multiplicity of the the triv-

12
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FIGURE 2.2. Digraph with n = 7 vertices and m = 2 connected components - a
system that does not meet the strongly connected condition.

ial eigenvalue, thus defining the scalar multiple of the group decision value(s). A complete

proof can be found in [34]. This fact sets the lower bound for the spectrum of the Lapla-

cian matrix at the origin, thus under the strongly-connected graph condition, all non-zero

eigenvalues are positive:

0 = λ1 < λ2 < .. < λn < 2∆ (2.7)

The conditions under which the bounds described in Equation (2.7) are valid can be re-

laxed to include digraphs with at least one spanning tree [1, 35].

The existence of a spanning tree is defined as the case where the digraph includes

a set of edges that define a path between a node v∗ and every other vertex in the graph,

or more formally, a sub-graph of digraph G that includes every vertex of G and is a tree.

Vertex v∗ is often called the leader vertex. The spectrum characteristics of the Laplacian

matrix that meet the spanning tree conditions are summarized in Lemma 1, the proof can

be found in [35].

Lemma 1. Let G be a connected digraph of n vertices and L be its Laplacian ma-

trix. Suppose G has m ≥ 1 strongly connected components. Then rank(L) = n − m and

all n − m non-trivial eigenvalues of L have positive real parts.

The spectrum of the matrix defining the consensus protocol has very interesting

properties that can be leveraged for the analysis of the stability and performance of the

13
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multi-agent system. In the case of connected topologies, the zero eigenvalue is known as

the trivial eigenvalue. The second smallest eigenvalue λ2 is called the algebraic connectiv-

ity, and is a direct measure of the performance of the system and the speed in which the

agents reach consensus [10].

The convergence analysis can be done in the frequency domain by analyzing the

terms of the system diagonalized by the similarity transformation with its eigenbasis T :

x = T z

żj = −λjzj(t − τ)
(2.8)

The characteristic equation of each decoupled subsystem will be in the form:

(s + λie
−τs)zi = 0 (2.9)

In the case of connected topologies or topologies with at least one spanning tree,

the first n-factors corresponding to the connected components or spanning trees, will have

a stationary root at s = 0, c In this form it can be readily seen that for systems with

higher order dynamics, each connected component in digraph G will generate n × m sta-

tionary roots. These terms are marginally stable at best. For the Laplacian matrix, restat-

ing Lemma 1, in the case of strongly connected digraphs or digraphs with a spanning tree,

the real part of the Laplacian matrix eigenvalues is positive. The factors generated by the

positive non-zero eigenvalues of the Laplacian matrix are called the disagreement dynam-

ics. In the case where τ = 0, the disagreement dynamics are stable. The stability picture

is completely defined by the analysis of the spectrum of the Laplacian matrix in the case

of fixed communication topologies. In the case of switching topologies (i.e., topologies that

are described by a time-varying digraph and thus a time-varying Laplacian matrix), the

stability analysis has to be completed for every possible topology. Because of this, it may

14
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be desired to restrict the communication graph to one that meets the connected or span-

ning tree conditions.

Solving the characteristic equation when τ ̸= 0, can be untractable due to the infi-

nite dimensionality of the transcendental term. The CTCR method, introduced in Section

2.2 establishes a methodology for determining the exact boundary and conditions under

which the disagreement terms are asymptotically stable, the proof can be found in [24].

Lemma 2. The stability of the consensus algorithm is determined by the marginal

stability of the group decision dynamics and the stability of the disagreement dynamics

Remark. In the presence of time delays, the stability of the system is determined

by the simultaneous stability of the disagreement dynamics, which have an infinite number

of roots.

Having established the stability conditions for the factors in Equation (2.9), the

convergence properties of the MAS system in Equation (2.3) can be found by considering

the spectral properties defined in Lemma 1. The asymptotic stability of the disagreement

dynamics ensures limt→∞ zi+m(t) = 0, and the system will converge to its stationary points.

A special case of this condition can be introduced when the communication topology is

balanced, the stationary point corresponding to eigenvalue λ1 = 0 solves the average con-

sensus problem, i.e. the final state of the system x(∞) = Ave(x(0)). Based on this analy-

sis we introduce the following definitions:

Definition 1 (Global Consensus). Global Consensus is reached if and only all

agents in the system reach a single group consensus value:

lim
x→∞

x(t) = x∗ (2.10)

Theorem 1. If λ1 = 0 is an eigenvalue of the Laplacian matrix and has an alge-

braic multiplicity of 1, the system in Equation (2.3) attains global consensus. Proof follows
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by substitution of λ1. This term is analogous to the system’s rigid body mode.

Definition 2 (Local Consensus). Local Consensus is reached if and only if all

agents in each group m reach a single group consensus value:

lim
t→∞

xm(t) = xm
∗ (2.11)

Theorem 2. If λ1 = 0 is an eigenvalue of the Laplacian matrix and has an alge-

braic multiplicity of m, then the system in Equation (2.3) attains local consensus. Proof

follows by substitution of λ1, ..., λm. The system is analogous to a system with multiple

rigid body modes.

A complete treatment of the definitions, theorems and conditions can be found in [10].

2.1.1 Alternative Forms of Consensus Protocols

Fax and Murray [36] introduced a geometrically-inspired consensus protocol for a

muliple-vehicle formation. We utilize the framework introduced in this section to analyze

the properties of the following system. Consider a group of n identical agents with linear

dynamics:

ẋi = Axi + Bui (2.12)

Where xi ∈ Rm, ui ∈ Rp are the agent states and i ∈ V = {1, .., ..., n} is the index for each

agent. Each vehicle receives the following measurements:


yi = C1xi

zij = C2(xi − xj)
(2.13)

Where zij ∈ Rm represents the relative external states of the agents and C1 and C2 are

general output matrices representing the self-sensing and relative-sensing measurements.

Assuming Ni ̸= ∅, all the relative state signals are fused into a single error signal, the aver-
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age of the relative state measurements:

zi = 1
|Ni|

zij (2.14)

We can also define a distributed controller K, which maps the relative state measurements

to the agents input ui. Matrices D1 and D2 are arbitrary gain matrices defining controller

K, corresponding to the global state feedback channel and relative state channel, respec-

tively.

ui = D1yi + D2zi (2.15)

Fax and Murray found that on relative-position based formations, a local controller

K stabilizes the formation dynamics if an only if it stabilizes al m n-th order systems.

This condition is equivalent to Lemma 2 and the frequency response methods to assess the

robustness and stability of the decoupled system can be utilized to assess the stability of

the MAS. The individual agents in the system are coupled by the relative state consensus

term, and decoupled otherwise. One can guarantee stability by utilizing inner-loop tech-

niques.

ẋi = Axi + Bui

ẏi = C1xi

żi = λiC2xi

(2.16)

Where {λ1, .., λn} ∈ Zn is the set of eigenvalues of the row-normalized graph Laplacian.

Remark. The normalized Laplacian of a digraph can have complex eigenvalues,

opening the door for Robust Control theory applications.
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2.1.2 Notation for Consensus Protocols of Higher-Order Systems

So far, the notation used in Equation (2.12) to represent a higher-order formation

of systems with uniform dynamics has been incomplete as it does include the dynamics of

the integrated system. Fax and Murray in [36] have introduced a general form to represent

the system using the Kronecker Product operator. We introduce the definition of the Kro-

necker Product of matrices and some properties relevant to the discussion in this thesis.

[37]

Definition 3 (Kronecker Product). The Kronecker product R between two

matrices P = [pij] and Q = [nij] is defined as:

R = P ⊗ Q = [pijQ] (2.17)

Remark. R is a block matrix of size mn × mn

P ∈ Zm×m, Q ∈ Zn×n → R ∈ Zmn×mn

The following conclusions follow:

If P is a diagonal matrix, then R is a block-diagonal matrix, where each block is of

size n × n.

If P is a block-diagonal matrix, where each block is of size i × i, and Q is a matrix

of size n × n, then R is a block-diagonal matrix, where each block is of size (n + i) × (n + i).

Property 1. Mixed Product of the Kronecker Products:

If A, B, C, D are compatible matrices under matrix multiplication AB and CD:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (2.18)

Property 2. Invertibility of the Kronecker Product:
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A ⊗ B is invertible if and only if both A and B are invertible, and the inverse is

given by:

(A ⊗ B)−1 = A−1 ⊗ B−1 (2.19)

Property 3. Left distributivity of the Kronecker Product:

(A + B) ⊗ C = A ⊗ C + B ⊗ C (2.20)

Property 4. Right distributivity of the Kronecker Product:

(A) ⊗ (B + C) = A ⊗ B + A ⊗ C (2.21)

Property 5. Spectrum of the Kronecker Product: The spectrum of product A ⊗ B

is equal to the product of the spectrums of A and B

σ(A) = λ0, λ1, ..., λn

σ(B) = µ0, µ1, ..., µn

σ(A ⊗ B) = µ0λ0, µ1λ1, ..., µnλn

(2.22)

Using the Kronecker Product, we describe the general linear system of homoge-

neous agents below:

ẋ = (In ⊗ A)x + (In ⊗ B)u (2.23)

Introducing local controller K in Equation (2.15), using global state measurements y and

relative state measurements z, the general representation for the linear consensus system
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In ⊗ K(s) In ⊗ G(s)u

In ⊗ C1

L ⊗ C2

r e x

y

z

−

FIGURE 2.3. Block diagram representation of distributed controller -
high-order system w. global and relative feedback channels.

of n agents of m order is:

y = (In ⊗ D1C1)x

z = (L ⊗ D2C2)x

u = (In ⊗ D1C1)x + (L ⊗ D2C2)x

(2.24)

Introducing two types of delays which may be present in the global state measure-

ment channel and the relative measurement channel, the fully assembled system represen-

tation can be expressed as:

ẋ = (In ⊗ A) x + (In ⊗ BD1C1) x(t − τ1) + (L ⊗ BD2C2) x(t − τ2) (2.25)

It is important to note that L is not necessarily the traditional digraph Laplacian

but a matrix representing the information exchange topology. In Equation (2.16), the ma-

trix is the in-degree normalized graph Laplacian. Additionally, τ1 and τ2 represent two gen-

eral kinds of time delays. The block diagram representation of the system is presented in

Figure 2.3.
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2.2 Exhaustive Analysis of the Stability of Time-Delayed Linear Consensus
Systems

In order to analyze the time-delay robustness of linear consensus protocols intro-

duced in the prior sections, we introduce the main findings of the CTCR methodology

[25, 26, 27, 38]. Consider the linear time invariant multiple time delayed system (LTI-

MTDS) with l delayed feedback terms, and delay vector τ = {τ1, τ2, ..., τn}:

ẋ = Ax +
l∑

i=1
Bix(t − τi) (2.26)

The characteristic equation for this system:

CE(s, τ) = det

(
sI − A −

l∑
i=1

Bie
−τis

)
(2.27)

The CTCR method provides an exact and exhaustive stability assessment of the LTI-MTDS

system for an arbitrary delay vector τ . This methodology can be applied to cases where

the non-linear system can be linearized at its operating points or through dynamic input-

output feedback linearization. In its general form, the characteristic equation can be ex-

pressed as the pseudo-polynomial:

CE(s, τ) = A0s + Ap+1 +
p∑

j=1
e−njτjsAj(s, τ ) (2.28)

A0 is an nth degree polynomial in s, Aj are quasi-polynomials in s and τ . nj is the highest

order of commensuracy of delay τj. Since A0(s) is free of delays and it is the highest order

term on s, this type of system is classified as "retarded" LTI-MTDS. This form is compati-

ble with the delayed systems that arise in the development of linear consensus protocols.

The primary objective of the CTCR method is determining the number of unsta-

ble characteristic roots (NU) in the delay-space τ ∈ Rl+. Although the number of char-
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acteristic roots of the trascendental system is infinite, the CTCR method utilizes the D-

Subdivision theorem to assert that the roots only change from the LHS of the complex

plane to the RHS, rendering the system unstable, at a particular continuous loci in the

time-delay domain [25]. The points in the loci correspond to the marginal stability points

of the trascendental equation. This transition can only happen at the locations where the

characteristic root crosses the imaginary axis, at a frequency ωc. The CTCR method pro-

vides the methods to find the loci where the transitions happen. The two primary meth-

ods to find this are equivalent and are known in literature as the Rekausius Substitution

method and the Spectral Delay Space by Rekausius Substitution or Half-Angle Tangent

substitution method. We introduce the main concepts in the CTCR paradigm without

proof:

Definition 4 (Imaginary Spectra). The complete set of imaginary spectra of

the LTI-MTDS system for delay vector τ ∈ Rl+ is defined as:

Ω = {ωc|CE(s = ωi, τ ) = 0, τ ∈ Rl+, ωc ∈ R}

Ω = {ωc|⟨τ, ωc⟩, τ ∈ Rl+, ωc ∈ R}
(2.29)

⟨τ, ωc⟩ is the locus in the delay spaces corresponding to imaginary root ωc

Definition 5 (Kernel Hypersurfaces ℘0). The curves spanning all the points

in the locus ⟨τ, ωc⟩ satisfying the constraint {0 < τk < 2π | k = 1, 2, ..., l} are called the

kernel hypersurfaces. The points on this curve contain the smallest delay composition cor-

responding to all the possible imaginary roots. By this definition, the kernel hypersurfaces

are unique for a given system, and the boundaries of the imaginary spectra are bounded.

The characteristic equation of the system contains an infinite number of roots, which can

be reconstructed from the kernel hypersurfaces.

Definition 6 (Offspring Hypersurfaces ℘). The curves obtained from the set
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of Kernel Hypersurfaces ℘ by applying the pointwise non-linear transformation:

{⟨τ1 ± 2π

ωc

j1, τ1 ± 2π

ωc

j2, ..., τl ± 2π

ωc

jl⟩ | j1, j2, ..., jl ∈ N} (2.30)

This definition agrees with the infinite dimensionality of the characteristic roots of a tran-

scendental equation

Definition 7 (Root Tendency - RT). The root tendency for each imaginary

crossing frequency ωci is defined as:

RT |τj

s=ωci = sgn[Re(Ss
τj

|s=ωci)] (2.31)

Where Ss
τj

= ∂s
∂τj

is the root sensitivity for delay τj, which can be computed by partial

implicit differentiation of the characteristic equation, evaluated at each kernel loci.

Remark. The root tendency is equivalent under the DS ↔ SDS transformation,

proof can be found in [38]. A Root Tendency of +1 is destabilizing and a Root Tendency

of −1 is stabilizing.

2.2.1 Spectral Delay Space and The Building Block Concept

The spectral delay space concept consists on transforming the loci ⟨τ1, τ2, .., τj⟩ and

its corresponding crossing frequency ωc to the coordinates ⟨τ1ωc, τ2ωc, ..., τjωc⟩. The pri-

mary advantage of representing the kernel hypersurfaces ℘ in this domain is that the ker-

nel hypersurface is bound to the l dimensional hypercube of edge length 2π. This property

will be readily apparent after transforming the transcendental equation from the exponen-

tial form to the trigonometric form. Some properties follow from this fact, they can be

found in [27].

Having established that the root transitions from stable to unstable can only occur

at the purely imaginary marginal stability points s = ωci, we use Euler’s identity to trans-

23



www.manaraa.com

form the transcendental terms:

eτjωci = cos(vj) − isin(vj) , vj = τjωc (2.32)

Parametrizing the trigonometric terms by a single parameter zj, the half-angle tangent:

zj = tan(vj

2
) , cos(vk) = 1 − z2

k

1 + z2
k

, sin(vk) = 2zk

1 + z2
k

(2.33)

The relationship between zj and tj is many-to-many. Performing this substitution allows

us to use the methods of algebraic geometry to find the loci of marginal stability points.

For the two-delay case, polynomial reduction theory and Sylvester’s Resultant has been

used to find the contours in 2D space corresponding to the stability transitions [27]. For

the multiple-delay case Caley’s Resultant and the frequency sweeping method has been

used to find the loci of the intersection of two arbitrary delays, while the others are fixed

[26].

2.2.2 CTCR Method

The algorithm to find the number of unstable roots in a LTI-MTDS system is as

follows:

Algorithm 1 (CTCR Method).

1. Find the number of unstable roots NU0 of the undelayed system CE(s, τ = 0).

2. Find the marginal stability loci in the Spectral Delay Space or Delay Space.

3. Trace a ray from the origin of the DS to the point τt = [τ1, τ2, ..] that needs be as-

sessed.

4. Find the points of intersection between the ray traced and the root transition hyper-

curves and order them by their euclidian norm .

5. Compute the Root Tendency at every point Pj of the intersection.

24



www.manaraa.com

6. Starting from the origin, and the number of stable roots NU0, iterate through P in

order:

• Add 2 unstable roots to NU when RT |P = +1

• Subtract 2 unstable roots RT |P = −1

We proceed to explain the CTCR process with an illustrative example.

A sample system of the form equation in 2.26 with two delays has a characteristic

equation:

CE(s, τ1, τ2) = s2 − 1
2

se−sτ1−sτ2 − 1
2

e−sτ1−sτ2 + se−sτ2 + e−sτ2 (2.34)

The number of unstable roots of the system can be computed:

{
s → 1

4
(
−1 − i

√
7
)

, s → 1
4
(
−1 + i

√
7
)}

The undelayed system has no unstable roots, NU0 = 0. Having established by the continu-

ity argument that the stability of the system only changes at its marginal stability points,

we perform the half-tangent substitution:

CE(ω, z1, z2) = ω2 + ω
(

2iz1z2
(z12+1)(z22+1) − (1−z12)z2

(z12+1)(z22+1) − z1(1−z22)
(z12+1)(z22+1) − i(1−z12)(1−z22)

2(z12+1)(z22+1) + 2z2
z22+1 + i(1−z22)

z22+1

)
2z1z2

(z12+1)(z22+1) + i(1−z12)z2

(z12+1)(z22+1) + iz1(1−z22)
(z12+1)(z22+1) − (1−z12)(1−z22)

2(z12+1)(z22+1) − 2iz2
z22+1 + 1−z22

z22+1

(2.35)

This is quasi-polynomial on ω with complex coefficients f0(z1, z2) , f1(z1, z2) , f2(1). For
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CE(ω, z1, z2) = 0, both real and imaginary parts have to be simultaneously equal to zero.

Re[CE(ωi, z1, z2)] = − ω2
(
z2

1 + 1
) (

z2
2 + 1

)
+ ω

(
z2 + z1

(
z2

2 + 3z1z2 − 1
))

+ 1
2
(
−3z2

2z2
1 + 3z2

1 + 4z2z1 − z2
2 + 1

)
= 0

Im[CE(ωi, z1, z2)] =1
2

ω
(
−3z2

2z2
1 + 3z2

1 + 4z2z1 − z2
2 + 1

)
+ 1

2
(
−6z2z

2
1 − 2z2

2z1 − 2z2 + 2
)

= 0

(2.36)

This process is equivalent to finding the set of common roots for the real and imaginary

polynomials, which can be found by using Sylvester’s, Bezout’s or Macaulay’s Resultant

[39]. These methods are available in modern computer algebra systems, like Wolfram Math-

ematica [40], Maple or Mathwork’s Matlab/MuPad. Without elaborating on the specifics of

the root finding process, we find the following common root:

(−1
827z6

2 − 99z4
2

8 − 45z2
2

8 + 27
8 )z6

1 + (−1
23z5

2 + 9z3
2 + 21z2

2 )z5
1 + (−1

847z6
2 − 151z4

2
8 − 73z2

2
8 + 31

8 )z4
1

+(−3z5
2 + 10z3

2 + 13z2)z3
1 + (−1

821z6
2 − 61z4

2
8 − 35z2

2
8 + 5

8)z2
1 + (−1

23z5
2 + z3

2 + 5z2
2 )z1 − z6

2
8 − 9z4

2
8 − 7z2

2
8 + 1

8

= 0

Replacing back z1 = tan(v1
2 ) and z2 = tan(v2

2 ) , the loci in the SDS domain can be found

by numerically finding the 0-level contour, or solving for z1 in terms of z2 and sweeping

the parameter across the domain of the building block 0 < z2 < 2π. This will generate the

Kernel Curves in the SDS domain. In order to transform back to the τ1, τ2 (DS) Space, the

crossing frequency must be found by solving the fully determined system with one equa-

tion and one unknown in Equation (2.35). We find two reflected curves and a single con-

tinuous curve on the DS space, this can be seen on Figure 2.4. We can also calculate the

following 6 offspring curves to complete the stability map in the 0 < τ1 < 10, 0 < τ2 < 10 <
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FIGURE 2.4. Kernel curves for second order system with 2 delays.
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FIGURE 2.5. Offspring curves for second-order system with 2 delays - stable
region shaded in grey.

domain. This can be seen in Figure 2.5. The root tendencies at the boundaries can be

calculated to graphically visualize the stable regions. We see that the system is stable for

all delays τ1 as long as τ2 is below the vertical boundary. This boundaries are exact and

exhaustive in the swept region.

The symbolic deployment of the CTCR method is computationally intensive and

systems of higher order may not be suited for this, this makes it difficult to deal with a

high-order MAS; however, if the system can be block diagonalized, we an analyze each in-

dividual block, similar to the process in equation 2.8. This methodology was introduced by
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FIGURE 2.6. Root tendency wrt. τ2 for second order system with 2 time delays. 
red corresponds to destabilizing transitions, blue corresponds to stabilizing 
transitions.

Cepeda-Gomez and Olgac [24] and simplifies the process for cases where the communica-

tion topology matrix is non-defective. We utilize the methodology in Chapter 3.

2.3 Control of Non-Holonomic Systems by Input-Output Feedback 
Stabilization

As outlined in the previous section, the CTCR paradigm allows us to study the sta-

bility and robustness of LTI-MTDS, however, the model for DWMR’s 1.4 is non-holonomic

and non-linear.

We restate the general control problem, for a general system:

ẋ = A(x, u) (2.37)

One would like to design a feedback control law of the form:

u = α(x) + β(x)v (2.38)

Such that:

• A desired closed-loop equilibrium point is asymptotically stable (regulation)
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• A desired closed-loop trajectory xd(t) is asymptotically stable (tracking)

In linear systems, the controllability condition implies asymptotic and exponential stability

at xe by a linear state feedback controller [41]:

α(x) = K(x − xe) (2.39)

Linearizing the system at operating point xe:

δ̇x = Aδx + Bδu , δx = x − xe , δu = Kδx (2.40)

If the system linearized system is controllable, then the original non-linear system can be

locally stabilized at xe [42].

Performing operating point linearization for the unicycle in Equation 1.4 by writing

it in affine form and computing the Jacobian:

ẋ = f(x) + g(x)u

f(x) = 0 g(x, u) = g(x)u

δg(x, u)
δx

=


0 0 −vsin(θ)

0 0 vcos(θ)

0 0 0


A ≡ 0 rank(B(x, u)) = 2 < 3

(2.41)

By inspection we can see that the eigenvalues of the jacobian matrix {λJ} = ∅ for all

states, and the system is rank deficient, hence it is uncontrollable and cannot be controlled

by means of smooth linear feedback. This is equivalent to not meeting Brockett’s stability

condition [43] and applies for all non-holonomic systems.

Oriolo, Luca and Vendittelli [44] introduced the method of dynamic input-output
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feedback linerization by chained forms to stabilize the unicycle using time-varying feed-

back:

u = α(x, t) (2.42)

Deriving the chained forms, we define the output η = {x, y} and take the first derivative of

the output:

η̇ =

ẋ

ẏ

 =

cos(θ) 0

sin(θ) 0


u1

u2

 (2.43)

The input u2 does not affect the output, we recover the dependence on u2 = ω by perform-

ing the input-output linearization.

Integrating the linear velocity input:

u1 = ε, ε̇ = a ⇒ η̇ = ε

cos(θ)

sin(θ)

 (2.44)

Differentiating η̇ using the chain and product rules, and substituting ε̇ = a and θ̇ = ω

results in a system with inputs a and ω:

η̈ =

cosθ −εsinθ

sinθ εcosθ


a

ω

 (2.45)

Using the second derivative of the output η̈ as the input vector v⃗ = [v1, v2], and assuming

ε ̸= 0, we can take the inverse and find:

a

ω

 =

cosθ −εsinθ

sinθ εcosθ


−1v1

v2

 (2.46)
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The original system input in terms of the dynamic compensator:

ε̇ = v1cosθ + v2sinθ

u1 = ε

u2 = v2cos(θ) − v1sin(θ)
ε

(2.47)

By construction the system is exactly linearized as two second order chained forms,

or the fourth order system with state ϕ = [x, ẋ, y, ẏ] and input u = [u1, u2]:

ϕ̈ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

ϕ +


0 0
1 0
0 0
0 1

u (2.48)

The system is block diagonal with 2 second order blocks. Oriolo, Luca and Vendittelli [44]

also introduce the tracking controller that guarantees asymptotic tracking [42] for trajec-

tory xd(t), yd(t) in the form:

v1 = ẍd(t) + kp1(xd(t) − x) + kd1(ẋd(t) − ẋ)

v2 = ÿd(t) + kp2(yd(t) − y) + kd2(ẏd(t) − ẏ)
(2.49)

Remark (Trajectory Restrictions). The desired trajectory xd(t), yd(t) must be

smooth and persistent (i.e u2
d1 = xd(t)2 + yd(t)2 must never go to zero), this is due to the

ε term in the denominator in Equation (2.47). A deadband may be implemented in the

regions where ϵ = 0
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CHAPTER 3

FORMATION CONTROL AND ROBUSTNESS ANALYSIS

3.1 Linear Consensus Protocol Design

In Section 2.1.1 we introduced an alternative form of consensus protocols for leader-

less formations. In this section, we extend the analysis to the case of formations with one

or multiple leaders and prove the asymptotic stability of the resulting consensus protocol.

Beginning with the general n × m order representation of the linear consensus system in

(2.25) and the results of the dynamic linearization of the unicycle, we design two identi-

cal decoupled consensus controllers, one for each output variable η = {x, y}. The process

is performed for output variable x but the analysis is identical for output variable y. We

define the 2n-dimensional vector of state variables x = [x1, ẋ1, .., xn, ẋn] and build the

full-state feedback system in Equation (3.1) under the assumption that the system is fully

observable in the presence of two arbitrary time-delays τ1 and τ2, where An is the system

matrix of each of the agents in the system, In is the n × n identity matrix and D1 and D2

are arbitrary feed-forward matrices of size 2 × 2.

ẋ = (In ⊗ An)x − (In ⊗ D1) x(t − τ1) + (L ⊗ D2) x(t − τ2) (3.1)

The process of designing a consensus protocol for the MAS of n agents for this system en-

compasses finding a set of suitable D1, D2 control matrices, corresponding to the global

and distributed state measurements, respectively, and finding the general form of L such

that the system is globally stable. Such system may solve the formation regulation and

formation tracking problems. We start this process by defining L.

Fax and Murray [36] and Cepeda-Gomez and Perico [29] utilize the in-degree nor-

malized graph Laplacian Matrix L 3.2 by scaling the digraph laplacian by the inverse of

the degree matrix D.

L = −D−1(D − Ag) = −In + D−1Ag (3.2)
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We recall that the degree matrix is defined as the diagonal matrix formed by the cardinal-

ity of the local neighborhoods of each agent i, D = diag(|N1|, |N2|, .., |Nn|). This form is

only valid in the cases where the cardinality of all the agents is not zero, i.e. the univer-

sal quantifier holds {Ni ̸= ∅ : ∀ i ∈ N, 1 < i < n}, or, every agent has a non-empty

informer neighborhood. In leader-follower architectures, by definition, an agent with the

role of leader is independent from the state of its followers, and thus it does not meet the

cardinality condition. In this case, the inverse of the degree matrix, D−1, is undefined. Mo-

tivated by the abundant references of leader-follower architectures for distributed control

systems [45] [5, 46, 47], we introduce a consensus matrix Lcomm for multi-agent systems

that permits the existence of leaders as part of the formation. This matrix is obtained by

scaling the adjacency matrix Ag by the Moore - Penrose pseudoinverse of the degree ma-

trix, D+.

Lrel = −In + D+Ag (3.3)

This form for matrix L corresponds to a communication matrix of scaled relative state

measurements. In the cases where the agents are not capable of communicating relative

state measurements, we define matrix Lg as the global state communication matrix.

Lg = D+Ag (3.4)

In order to prove the convergence of the system defined in 3.1, we need to analyze

the spectral characteristics of matrix L and Lg.

Lemma 3. The spectrum of A + B, where A and B are a commuting pair AB =

BA, is contained in the set {λ1 + λ2 : λ1 ∈ σ(A), λ2 ∈ σ(B)}, where σ(A) is the spectrum

of A.

Proof. Found in [48].

Lemma 4. The spectrum of product D+Ag for a system with m leaders has m

33



www.manaraa.com

zero eigenvalues.

Proof. By definition, the adjacency matrix of a graph corresponding to the com-

munication topology of n agents, Ag ∈ Rn×m with m leaders is rank deficient, the same

applies to the degree matrix D. By direct consequence of the singular decomposition prop-

erty of the Moore - Penrose pseudoinverse, the operation does not alter the rank of the

matrix, and the product D+Ag shares the same properties:

rank(Ag) ≡ rank(D) ≡ rank(D+) ≡ rank(D+Ag) = n − m

{λ1 = 0, λ2 = 0, ..., λm = 0, λm+1, .., λn} ∈ σ(D+Ag)
(3.5)

Lemma 5. The Moore-Penrose pseudoinverse of a diagonal matrix with m zero

eigenvalues:

D+ = diag(01, 02.., 0m,
1

dm+l

, ..,
1
dn

) (3.6)

Theorem 3. The spectrum of a communication matrix Lg containing scaled global

state measurements is contained in Gershgorin’s disk of radius 1, centered at the origin.

Proof. By Gershgorin’s circle theorem [49], the spectrum σ of D+Ag is contained

in the disks centered around diag(D+Ag) = [dagii] with radii Ri = ∑n
i ̸=j |aij| = 0, for rows

corresponding to the m leaders, and Rj = ∑δi
i ̸=j | 1

δi
| = 1. Recalling diag(Ag) = {0}n,dagii =

0, all the circles are centered at the origin of the complex plane with radii of 0 or 1. The

eigenvalues corresponding to leader agents are λl = 0.

σ(D+Ag) = D(0, 0) ∪ D(0, 1) (3.7)

Theorem 4. The real parts of the eigenvalues of a communication matrix L con-

taining scaled relative state measurements are zero or negative.

Proof. By Lemma 3 and 3, the sum L = −In + D+Ag shifts the eigenvalues of
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Lg = D+Ag one unit to the left, thus all eigenvalues are contained in the Gershgorin’s disk

D(−1, 1) and the eigenvalues corresponding to the leader are λl = −1.

{σ(D+Ag) : σ(D+Ag) = {λ1, ..., λn} | − 1 ≤ Re(λi) ≤ 1}

{σ(L) : σ(L) = {λ1, ..., λn} | − 2 ≤ Re(λi) ≤ 0} .

(3.8)

So far we have proved that the spectrum of a matrix L is negative and bounded by

the origin, which makes matrix L negative semidefinite, this form corresponds to the dis-

tributed sensing matrix of relative state measurements. In order to simplify the analysis,

we consider the case where D1 = D2 = K, this condition implies that the relative and

self-sensing state feedback signals are uniformly scaled. Under this condition, the general

system in Equation (3.1) can be rewritten as:

ẋ = (In ⊗ An)x − (In ⊗ K) x(t − τ1) + (−In + D+Ag ⊗ K) x(t − τ2) (3.9)

K =
[ 0 0
Kp Kd

]
(3.10)

Having analyzed the characteristics of the possible communication matrices Lcomm,

we can further specify the system by defining the nature of the two rationally independent

time-delays τ1 and τ2. We consider τ1 as the time-delay incurred by each agent while ob-

taining it’s own state information, we call this delay the sensing delay. We also define τ2

as the linear combination of the sensing delay and the communication delay induced by

the interaction of agents in a communication network, τ2 = τs + τcomm. As proven in The-

orem 3, the real part of the spectrum of matrix Lg may contain positive eigenvalues and

constitutes the limiting case in the stability analysis.

ẋ = (In ⊗ An)x − (In ⊗ K) x(t − τs) + (Lcomm ⊗ K) x(t − (τs + τcomm)) (3.11)
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In ⊗ K(s) G(s)u x

e−sτsIn ⊗ I2

e−sτcomm −L ⊗ I2

r e

y∗

z∗

−

FIGURE 3.1. Block diagram of consensus system with sensing and
communication delays.

3.2 Stability Analysis of the Time-Delayed Consensus System

The stability analysis of the consensus system in 3.11 continues by utilizing the de-

coupling procedure first identified by Cepeda-Gomez and Olgac [24] for time-delayed con-

sensus systems. By virtue of the design of the system and Property 3, the matrices in the

left-hand side of the operator "⊗", namely In, In, Lcomm, form a commuting set and can be

simultaneously diagonalized.

Theorem 5 (Block Diagonalization Property of Linear Consensus Sys-

tems). The system in 3.11 can be represented by the block-diagonal system of n blocks,

whose block sizes are equal to the order of agents, m. The characteristic equation of the

transformed system can be expressed as a product of the n subsystem characteristic equa-

tion factors. This theorem holds true if and only if communication matrix Lcomm = L or Lg

is non-defective,

CE(s, Kp, Kd, τs, τcomm) = det(sImn − Im ⊗ An − Im ⊗ Ke−τss − Lcomm ⊗ Ke−(τs+τcomm)s)

=
n∏

j=1
qj(s, λj, Kp, Kd, )

(3.12)
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Proof. Assuming the communication matrix Lcomm is non-defective, there exists

a non-singular matrix T such that the similarity transformation is the diagonal matrix of

eigenvalues T −1(Lcomm)T → Λ, this statement follows the definition of defective matrices

and the proof can be found in any standard linear algebra book [50]. Finding this matrix

is equivalent to transforming the system to modal coordinates z = Tx. Constructing the

Kronecker products (T ⊗ I2) and (T −1 ⊗ I2), we perform the similarity transformation:

A∗ = (T −1 ⊗ I2)A(T ⊗ I2) = (T −1InT ) ⊗ (I2AnI2) = In ⊗ An

B∗
1 = −(T −1 ⊗ I2)In(T ⊗ I2) = −(T −1InT ) ⊗ (I2KI2) = −In ⊗ K

B∗
2 = (T −1 ⊗ I2)L(T ⊗ I2) = (T −1LcommT ) ⊗ (I2KI2) = Λ ⊗ K

(3.13)

ż = A∗z + B∗
1z(t − τs) + B∗

2z(t − (τs + τcomm)) (3.14)

Matrices in Equation (3.14) are block diagonal with n blocks A∗
i ∈ Rm×m, B∗

1i ∈ Rm×m, B∗
2i ∈

Zm×m:

A∗
i = An

B∗
1i = −K

B∗
2i = λiK

(3.15)

The characteristic equation of each block:

CE(s, Kp, Kd, τs, τcomm)∗ = det(sIm − An + Ke−τss − λiKe−(τs+τcomm)s) (3.16)

Remark (Defective Matrices Lcomm). In the case of defective matrices, the

characteristic equation of the system in Equation (3.11) can be factorized by factors of

order equals to 2(m + 1), where m = Ma(λi) − Mg(λi), the algebraic and geometric multi-

plicities of eigenvalue λi, respectively. This can be proven by the previous process and the
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Jordan decomposition theorem [50].

3.2.1 CTCR Deployment for Time-Delayed Factors

The time-delayed factors in Equation (3.16) correspond to a LTI-MTDS system of

the neutral type. The time-delayed MAS system will be stable if an only if the disagree-

ment dynamics factors are stable and the group decision dynamics are stable as well. Ap-

plying the CTCR paradigm introduced in Section 2.2, we can find the stability maps of

the system by following Algorithm 1. The first step is establishing the number of unstable

roots NU0 of the undelayed system, i.e Equation (3.16) where τcomm = 0 and τs = 0. In or-

der to carryout the numerical portion of the algorithm we substitute the system dynamics

of the linearized unicycle:

An =
[0 1
0 0

]
(3.17)

CE(s, Kp, Kd)∗ = s2 + Kd(1 − λj)s + Kp(1 − λj) = 0 (3.18)

Recalling λj is an arbitrary eigenvalue of the communication matrix, Lcomm, and the re-

sults in Theorem 4, the limiting case of the analysis corresponds to Lcomm = Lg, we con-

tinue with this assumption, however, the analysis can be completed considering the spec-

trum of Lcomm = Lrel. Accordingly, the eigenvalues λj are in the disk D(0, 1) and the

largest value is λj = 1. This corresponds to the marginal stability factor, equivalent to

the group consensus dynamics and occurs in systems where the strongly connected condi-

tion, introduced in Section 2.1, is met. This factor produces two roots at the origin. All

other factors are asymptotically stable for Kp > 0, Kd > 0, these factors correspond to the

disagreement dynamics.

The second step involves finding the exact marginal stability curves of the system

by performing the half-angle tangent substitution. This substitution transforms each fac-

tor 3.16 to pseudo-polynomial form in ω, parametrized by coefficients Kp, Kd, λ and the
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half-angle tangent spectral delay factors τs → z1, τcomm → z2 defined in Equation (2.33):

CE(ω, Kp,Kd, z1, z2)∗

= − ω2

+ ωKd

(
λj

(
4iz1z2

(z2
1 + 1) (z2

2 + 1)
− 2 (1 − z2

1) z2

(z2
1 + 1) (z2

2 + 1)
− 2z1 (1 − z2

2)
(z2

1 + 1) (z2
2 + 1)

− i (1 − z2
1) (1 − z2

2)
(z2

1 + 1) (z2
2 + 1)

)

+ 2z1

z2
1 + 1

+ i (1 − z2
1)

z2
1 + 1

)

+ Kp

(
λ

(
4z1z2

(z2
1 + 1) (z2

2 + 1)
+ 2i (1 − z2

1) z2

(z2
1 + 1) (z2

2 + 1)
+ 2iz1 (1 − z2

2)
(z2

1 + 1) (z2
2 + 1)

+ (z2
1 − 1) (1 − z2

2)
(z2

1 + 1) (z2
2 + 1)

)

− 2iz1

z2
1 + 1

+ 1 − z2
1

z2
1 + 1

)
= 0

(3.19)

The common root of the imaginary and real parts of Equation (3.19) is a non-linear ex-

1

3

2

4

FIGURE 3.2. Topology example - one connected leader (1) , three fully
connected followers (2,3,4).

pression with 126 irreducible terms. In order to illustrate the technique we analyze the

stability of the system defined by the graph in Figure 3.2. This system has one connected

component and one leader. The scaled adjacency matrix for this system is shown in Equa-

tion 3.20, with its diagonal form 2.

2This matrix has two trivial eigenvalues, λ1 = λ2 = 0, one corresponding to the
spanning tree where the root is the leader, and one corresponding to the connected com-
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D+Ag =


0 0 0 0
1 0 1 0
1 1 0 1
1 0 1 0



Λ =


0 0 0 0
0 0 0 0
0 0 −0.57735 0
0 0 0 0.57735



(3.20)

The time delayed factors are in the form 3.16. By Equation (3.18), the number of unstable

roots NU0 = 0 when τ → 0. By selecting gain values Kp = Kd = 1 we find the loci of root

transitions or the points of marginal stability by finding the zero level contour of the com-

mon roots of the imaginary and real parts of Equation 2.33. The points in this contour,

corresponding to the marginal stability loci in the SDS space, are used to find the corre-

sponding values of the crossing frequencies ωc, these factors generate the continuous 3D

[z1, z2, ωc] kernel curves shown in Figure 3.4. The Kernel Curves in Figure 3.3 correspond

to the 0 < v1 < 2π , 0 < v2 < 2π domain projection of the 3D curves in the v1, v2 plane.

This projection can be seen in Figure 3.3, along with its representation in the {τs, τcomm}

domain.

We can readily observe that the MAS stability is independent of τcomm for small τs.

We zoom into the square region 0 < τs < 5 , 0 < τcomm < 5 region to emphasize this fact,

and mark the stability region in gray, along with the number of unstable roots in each of

the areas bound by the transition curves. This can be seen in Figure 3.5. From this analy-

sis we can conclude that the disagreement factors generated by eigenvalues λ3 = −0.57735

ponent of followers, this matrix is non-defective and the repeated trivial eigenvalue has a
geometric multiplicity of 2
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FIGURE 3.3. Marginal stability curves for example topology in Figure 3.2 -
0 < τ < 10.

41



www.manaraa.com

FIGURE 3.4. Marginal stability 3D kernel curves in SDS domain for topology
in Figure 3.2.

and λ4 = 0.57735 represent the absolute stability bounds of the system, these curves cor-

respond to those represented by red and green lines, respectively, in Figures 3.5a, 3.4 and

3.3. A system characterized by delays below this 2D boundary will be asymptotically sta-

ble.

Remark (Asymptotic Stability of Time-Delayed Factors). Consensus pro-

tocol factors in Equation (3.12) are asymptotically stable and converge to zero if and only

if the time delay vector τ = {τs, τcomm} is within the region of stability defined by the

number of unstable roots found by utilizing the CTCR method.

3.3 Formation Control of Time-Delayed Multi-Agent Systems

The stability of the disagreement factors in the closed system 3.11 guarantee that

the agents will reach a common state, this may imply that the agents in the formation

will collide with one another. In formation problems it is desired for the agents to form a

specific shape and/or track a trajectory.
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FIGURE 3.5. Stability picture for topology in Figure 3.2.
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3.3.1 Formation Regulation Control in Time-Delayed Consensus Systems

We introduce a time-varying forcing term ϕ(t), containing the relative states of the

agents defining the formation structure in the un-transformed domain of x. Function ϕ(t)

is expressed in terms of decoupling matrix F (s), such that it solves the formation regula-

tion problem. Following the convention in this thesis, ϕ(t) refers to the vertically concate-

nated forcing functions for the multi-agent system, as defined in Equation (3.21).

Φ(t) = (Fr ⊗ K)ϕ(t) (3.21)

ẋ = (In ⊗ An)x − (In ⊗ K) x(t − τs) + (L ⊗ K) x(t − (τs + τcomm)) + Φ(t) (3.22)

Theorem 6 (Formation Regulation). For the general block-diagonalizable de-

layed consensus system of second-order agents defined by system matrix A, feedback matri-

ces In and L, control matrix K and control input Φ(t).

(In ⊗ A)x − (In ⊗ K) x(t − τ1) + (L ⊗ K) x(t − τ2) + Φ(t) (3.23)

Φ(t) sufficiently solves the formation regulation problem if Fr = (In − L) and the n decou-

pled factors zj are stable.

Proof. The frequency response analysis of the decoupled system with the system

matrices defined in Equation (3.15) can be utilized to find the form of matrix Fr. Decou-

pling the system by Theorem 5, we refer to Equation (3.13) for the definition of matrices

A∗, B∗
1 and B∗

2 . Matrices with superscript ∗ are block-diagonal matrices.

χ(t) = (T ⊗ I2)ϕ(t)

Φ∗(t) = (T −1 ⊗ I2)χ(t) = (T −1FrT ⊗ K)ϕ(t)
(3.24)

ż = A∗z + B∗
1z(t − τ1) + B∗

2z(t − τ2) + Φ∗(t) (3.25)
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The frequency output response of the transformed MIMO system 3.25:

Z(s) = [sI2n − A∗ − I∗
ne−τ1s − L∗e−τ2s]−1Φ∗(s) (3.26)

In its general form Φ∗(s) is not block diagonal, or if it is, it is not guaranteed to have

block sizes compatible with the blocks of matrices A∗, B∗
1 , B∗

2 appearing in the consensus

system. However, we can restrict the form of matrix Fr such that the system can be decou-

pled by ensuring the similarity transformation T −1FrT diagonalizes matrix Fr. The choice

of Fr evident considering modal matrix T contains the spectrum of the feedback matrices,

in the left-hand side of the Kronecker product, and simultaneously diagonalizes their linear

combination −βIn + γL. Hence, without loss of generality, matrix Fr can have the follow-

ing form:

Fr = (βB1 + γB2)

T −1FrT = (βB∗
1 + γB∗

2)
(3.27)

Substituting into Equations 3.24 and 3.25, by virtue of the block diagonal properties and

compatibility of the matrices in the system, we can express the transfer function matrix

[41] of the system in terms of the n second order subsystems:

Hj(s) = [sI2 − A∗
j − B∗

1je
−τss − B∗

2je
−(τs+τcomm)s]−1

 0 0
Kp(γλj − β) Kd(γλj − β)

 (3.28)

This expression can be rewritten in terms of the determinant/adjoint form of the matrix

inverse, this results in an expression in terms of the n characteristic equations in Equation

(3.12) and the product of the matrix adjoint and the decoupling factor:

Hj(s) = 1
CE∗

j (s, Kp, Kd, τ1, τ2)

Kp (γλj − β) Kd (β + γλj)
sKp (γλj − β) sKd (γλj − β)

 (3.29)
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Assuming all decoupled factors are desired to reach a stationary relative position zj(∞) →

zjf , we find the steady-state response to a scaled step input.

Z∗
j (t → ∞) = lim

s→0
sHj(s)

 zjf

s

0

 =

 zjf (β−γλj)
λj−1

0

 =

zif

0

 (3.30)

We find that for matrix Fs to decouple the system, constants γ = β = −1, for any eigen-

value λj if and only if the factors are stable and the closed loop system matrix sI2 − A∗
j −

B∗
1je

−τ1s − B∗
2je

−τ2s is non-singular. These are the sufficient conditions to solve the forma-

tion regulation problem in a system governed by the control scheme in Equation (3.22),

thus proving Theorem 6. Using this form, the steady-state error to sudden step-like for-

mation shape changes is zero. The final form of the forcing function for the system with

global feedback is defined as:

Φ(t) =
((

In − D+Ag

)
⊗ K

)
ϕ(t) (3.31)

The form for Equation (3.31) is convenient for implementation in distributed systems since

it does not require any ahead-of-time calculations, does not depend on the formation shape

or the dynamics of the individual agents and depends solely on the general structure of

the feedback scheme (i.e. the communication and sensing capabilitites of the system). An

agent, cognizant of it’s position in the formation, may interchange this knowledge with its

informers and each member of the system can calculate the forcing factor required to par-

ticipate in the formation in a distributed manner.

3.3.2 Formation Tracking Control in Time-Delayed Consensus Systems by Connected
Leaders

In a system with multiple leaders as part of the formation, each leader will be in-

dependent of the state of the rest of the group, the analysis of the leaders is equivalent to

the analysis of the disagreement factor corresponding to the trivial eigenvalue of D+Ag. In
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the state-space the dynamics of the leader are presented below, where x is the state of the

leader x = [x1, ẋ1]:

ẋ =
[0 1
0 0

]
x −

[ 0 0
Kp Kd

]
x(t − τ1) (3.32)

This is a LTI system with a single time delay in the feedback channel. The stability of

the leader factor can be analyzed using the CTCR method, and was part of the analy-

sis performed to produce the complete stability maps of the sample system in Figure 3.3.

The stability margin for this factor is the curve in yellow in Figure 3.5. For the leader

to track a desired trajectory xd = [xd(t), ẋd(t)], we introduce the exogenous input T =[ 0
Kpxd + Kdẋd

]
and rewrite the equation in terms of error e(t) = xd(t)−x(t) and exogenous

input xd(t). For conciseness non-delayed terms xd(t), e(t) and x(t) are written without ex-

plicit mention of their time dependence. We find the H(s) = E(s)
Xd(s) transfer function and

analyze the steady-state response of the system to a step input 1/s, and to a ramp input

1/s2:

ẍd − ẋd − xd + Kdẋd(t − τs) + Kpxd(t − τs) = ë + Kdė(t − τs) + Kpe(t − τs)

H(s) = s2 + (Kde−sτs − 1)s + (Kpe−sτs − 1)
s2 + Kde−sτss + Kpe−sτs

(3.33)

e(t → ∞) = lim
s→0

sH(s)1
s

= 0 (3.34)

e(t → ∞) = lim
s→0

sH(s) 1
s2 = τs (3.35)

We can see that the tracking error for step inputs is equal to 0, and the tracking error for

ramp input is bounded by the value of the sensing delay τs. External access to the dynam-

ics of the leader allows us to drive a single or multiple leaders to set the formation in a

global frame. As mentioned in the formation regulation problem, the time-varying forma-

tion shape defines the relative position of the agents in space. For formations with one or

more leaders, the decoupled nature of the leader agent guarantees the shape is fixed at
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the positions of the leaders. We assert, without proof, that accurate formation tracking

is guaranteed when the disagreement dynamics are stable and the tracking performance

of the leader is acceptable. A proof may follow from results in cascading systems theory,

focusing on the relative strength of the inner loop, corresponding to individual global mea-

surement feedback, and the decoupled nature of the leader terms in the consensus system.

We can represent the tracking input as part of the control scheme by noting that the ma-

trix P , P ∈ Zn×1 of row sums of matrix Q = In − D+Ag has entries equal to one, in rows

corresponding to the leaders, and equal to zero, in rows corresponding to the followers. Re-

calling xd(t) = [xd(t), ẋd(t)] and multiplying:

P =
[

n∑
i=1

qij

]
(3.36)

T(t) = (P ⊗ K)xd(t) (3.37)

The final form of the consensus system with formation tracking and regulation capabili-

ties is defined in terms of exogenous inputs Φ(t) in Equation (3.31) and T (t) in Equation

(3.37) as follows:

ẋ = (In ⊗ An)x − (In ⊗ K) x(t − τs) + (D+Ag ⊗ K) x(t − (τs + τcomm)) + Φ(t) + T(t) (3.38)

3.4 Distributed Non-Linear Predictor for Input-Output Feedback Linearization
of Unicycles with Sensing Delays

Recalling Equation (2.47), the input-output feedback compensator for each DWMR

depends on non-delayed state variable θ. The compensation has to be exact in order to

establish that the marginal stability points found in the analysis of the linear consensus

system are equivalent to those of the non-linear non-holonomic system. In the literature

of networked control systems we find the use of predictors[51, 52] to mitigate the corrupt-
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FIGURE 3.6. Distributed agent - without predictor.

FIGURE 3.7. Distributed agent - with delayed state predictor.

ing effect of time-delays in feedback systems. We adapt the work of Kojima et al. [53] to

design a local non-linear predictor to use in conjunction with the dynamic compensator

in Equation (2.47) to linearize the system. We focus on a distributed prediction scheme,

where each agent is in charge of predicting their state based on time-delayed measure-

ments. The predictor is a full-order predictor due to the coupling of the state and the in-

puts of the non-holonomic system. The agent without a predictor is shown in Figure 3.6.

The agent with the predictor is shown in Figure 3.7. Defining the following quantities, x̂

is the predictor state, x∗ is the time-delayed state measurement, x̂∗ is the time-delayed
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predictor state. The delayed unicycle has the following dynamics:

ẋ∗ =



ẋ∗ = v(t)cos (θ(t − τs))

ẏ∗ = v(t)sin (θ(t − τs))

ω∗ = θ(t − τs)

(3.39)

The state predictor dynamics are defined below, where Kpred = diag(k1, k2, k3):


˙̂x
˙̂y
˙̂
θ

 =


v(t)cos θ̂(t)
v(t)sin θ̂(t)

ω(t)

− Kpred


x̂∗ − x∗

ŷ∗ − y∗

θ̂∗ − θ∗

 (3.40)

Kojima et al. [53] present sufficient conditions for the uniform asymptotic convergence to

zero of the prediction error e = x̂ − x, the conditions are presented below, and depend on

the matrix Kpred, the constant sensing delay τs, and the maximum velocity input v̄.

Theorem 7 (Asymptotic Convergence of Predictor). The non-linear predic-

tor in Equation 3.40, for a constant time-delay τs, asymptotically converges to zero if:


(k1v̄ + 2k2

1)τs < −v̄ + 2k1

(k2v̄ + 2k2
2)τs < −v̄ + 2k2

(k1 + k2)v̄ + k2
3)τs < −2v̄ + k3

(3.41)

Under the simplifying assumptions k1 = k2, the sufficient conditions for asymptotic conver-

gence are presented below: 
k1 > v̄

2

k3 > 2v̄

τs < min(2k1−v̄
k3−2v̄

, k1(2k1+v̄)
2k1v̄+k2

3
)

(3.42)

Proof. Follows Lyapunov-Razumikhin’s theorem and can be found in Kojima et al.

[53].
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CHAPTER 4

NUMERICAL EXAMPLES, VALIDATION AND DISCUSSION

4.1 Example MAS of Non-Holonomic Agents

We continue with a numerical example corresponding to a directed butterfly graph

of 12 agents. This graph is shown in Figure 4.1, in this example the layout of the graph

also defines the positions of the agents in the formation, but it can be completely arbitrary

as long as the communication topology does not change. We highlight the 2 identical con-

nected components in red and orange. The two connected components are coupled by in-

termediate agents 6 and 9. The leaders of this formation are agents 3 and 12, we expect

1

2

3

5

6

8

9

10

11

12

FIGURE 4.1. Directed butterfly topology - 12 agents, 2 leaders, 2 connected
components.

to see 2 trivial eigenvalues corresponding to the leaders, and 2 corresponding to the con-

nected components. For 12 linearized unicycle agents, the identity matrix is of size 12 × 12

In = I12, An is defined in Equation (3.17) and gain matrix K is defined in Equation (3.10),

with gains Kp = 0.2, Kd = 1. These gains can be set using optimal control techniques
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on the dynamics of the leader agents. The scaled adjacency D+Ag for this topology is ex-

pressed below, along with a list of eigenvalues.

D+Ag =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 1

3
1
3 0 1

3 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

3
1
3 0 1

3
0 0 0 0 0 0 0 0 0 0 0 0



(4.1)

This matrix is non-defective and has two complex conjugate eigenvalue pairs; the complex

conjugate eigenvalue pairs don’t pose a problem to the CTCR method.

σ
(
D+Ag

)
=
{

− 1√
2

,
i√
2

, − i√
2

,
1√
2

, − 1√
3

,
i√
3

, − i√
3

,
1√
3

, 0, 0, 0, 0
}

(4.2)

The marginal stability curves for this system are presented in Figure 4.2. For presentation

purposes we only show the kernel curves and the curves in the 0 < τ < 3 region.

We see that the stability of the system is independent of the communication delay

for small τin. The maximum allowable sensing delay for the formation is τs = 0.63 for any

τcomm. The formation regulation matrix, defined in Equation 3.31, is numerically expressed

in Equation (4.3).The leader mapping matrix, defined in Equation (3.37) is computed for
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τ
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FIGURE 4.2. Marginal stability loci for directed butterfly topology - kernel
curves for directed butterfly topology in Figure 4.1 and loci in 0 < τ < 3.
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the formation with two leaders.

Fr =



1 −1 0 0 0 0 0 0 0 0 0 0
0 1 −1

2 0 0 0 −1
2 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0
0 0 −1

3 −1
3 1 −1

3 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0

−1
2 0 0 0 0 0 0 1 0 0 0 −1

2
0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1

3 −1
3 1 −1

3
0 0 0 0 0 0 0 0 0 0 0 1



P =



0
0
1
0
0
0
0
0
0
0
0
1



(4.3)

The relative position vectors for the x and y direction consensus controllers, corresponding

to the grid position generates constant exogenous inputs ϕ(t):

ϕ(t)x =



1
0
1
0
1
0
2
0
2
0
2
0
3
0
3
0
3
0
4
0
4
0
4
0



ϕ(t)y =



1
0
2
0
3
0
1
0
2
0
3
0
1
0
2
0
3
0
1
0
2
0
3
0



(4.4)

In the control scheme the only unknown is the gain matrix Kpred for the distrib-

uted delayed state predictor. For the experimental plant [31], the maximum linear ve-

locity input was found to be v̄ = 0.1m/s, we analyze the maximum allowable sensing

delay in the predictor by using inequalities in 3.42, this limit is conservative in nature
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due to the Lyapunov-Krasovskii functional methodology to use the boundary. Sweeping

0 < k1 < 5, 0 < k3 < 0 we obtain the surface plot defining the conservative maximum al-

lowable sensing delay τs for a combination k1, k3. Restricting the domain to the maximum

allowable delay of the plant, we set k1 = 0.9, and any gain 0.2 > k3 > 6 will ensure the

predictor error has asymptotic stability and converges to zero. This is shown in Figure 4.3.

4.1.1 Model Implementation

A model of the consensus system was implement in Mathwork’s Matlab-Simulink,

the general structure of the model is composed of an input subystem that generates the

time-dependent spacing and trajectory factors. Two identical consensus controllers, one for

each coordinate x and y, and a subsystem including all of the agents, each containing the

input-output linearization compensator, the observer and the unicycle model. The agent

subsystem outputs state pairs x, ẋ , y, ẏ and θ, ω, for the entire formation independently.

The state is delayed by a transport delay block and fed back into the consensus controllers.

The outer layer of the model can be seen in Figure 4.4. The consensus controllers graph-

ically implements the linear equation system, it takes three inputs, the delayed state, the

inter-agent formation signal ϕ(t), and the trajectory signal xd(t), this can be seen in Fig-

ure 4.5. Each agent block, shown in Figure 4.6 includes the distributed control logic, in-

cluding the non-linear predictor and the input-output compensator. It has two input ports,

one for each direction, and a single output signal, containing the full predicted state, as

well as its derivatives. Blocks with labels referring to the state variables x, y, θ represent

routing blocks to extract the specified variables. The unicycle, predictor and input-output

compensator are implemented as compiled C Level-2 s-functions. Each agent exports its

prediction error for further analysis. One addition to the non-linear unicycle model was

the inclusion of actuator saturation limits, for both linear and angular velocity units. The

e-puck robot [31] has a maximum linear velocity v̄ = 0.1 m/s, an a wheelbase of 4.1 cm,

resulting in a maximum angular velocity of 4.87 rad/s.
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FIGURE 4.3. Time-delay margins vs gain selection - non-linear predictor.
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FIGURE 4.4. Consensus system model - outer layer.

FIGURE 4.5. Consensus system model - consensus controller.
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FIGURE 4.6. Agent model - predictor, IO compensator and non-linear plant.

Signal routing between the consensus controllers and the agents was handled by

defining two s-functions, a breakCat function that takes in two channels, each with n input

signals, and separates them into n channels each with two signals, one per control input

in x and y, and a joinCat function where the states of each individual agent is concate-

nated and separated into three signals, one for each state variable and its derivative. The

number of inputs and outputs of each signal routing block is dynamically calculated by

providing the number of agents as a parameter. The trajectory generation block contains

the sources for the formation keeping and tracking signals and is not shown.

4.2 Simulation Results

In this section we execute the model defined previously and analyze each of the as-

pects discussed in Chapter 3. We summarize the simulation parameters in Table 4.1.

4.2.1 Prediction Error

Before analyzing the overall performance of the formation, we show the convergence

of the distributed non-linear predictor. As expected by the design conditions, the error as-

ymptotically converges down to zero. The initial conditions of the predictor and the agent
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FIGURE 4.7. Signal routing model.

TABLE 4.1. Simulation Parameters

Parameter Symbol Value
Solver - ode45 - Runge-Kutta (4,5)

Step-Size δt 4e−3 seconds
Proportional Gain Kp 0.2
Derivative Gain Kd 1
Predictor Gains Kpred {0.9, 0.9, 1.8}
Sensing Delay τs 8 ms

Communication Delay τcomm 150 ms
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were initialized at random. The error dynamics are shown in Figure 4.8.

FIGURE 4.8. Prediction error with random initial conditions - states
0 < x, y < 10 , 0 < θ < 2π.

4.2.2 Consensus Variable Convergence

Simulating the unforced system shows that the agents reach a common state at the

origin of the formation. Figure 4.9 shows the individual consensus variables x and y and

the trajectories taken by the agents to reach this position in the cartesian plane. The set-

tling time of the system is about 30 seconds, with the leaders 3 and 12 settling first. The

response of the system evidences that the coupling of the remaining agents causes them to

behave and experience similar transient response characteristics. Comparing the simula-

tion results with the expected results of the linear plant can be achieved by deployment of

the QPmR method [54], which allows us to compute all the poles within a specified region

of a linear system at a particular time-delay combination. The QPmR method indentifies

the dominant root of the system with a time-constant of 1
ωnζ

= 6.9 s , corresponding to

~ 1
4.3 the settling time of the simulated non-linear system. This value agrees within 10% of

the classical settling-time expression for linear second order systems, reinforcing the pre-

sumption that the agents behave linearly. The transient response characteristics of the
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system found using the QPmR method can be found in Table 4.2.

4.2.3 Formation Regulation

The system forced by the relative spacing factor ϕ(t) reaches the error band of the

desired positions in the grid after 30 seconds and remains stationary. This is consistent

with the expected step response characteristics of the linear system, however, the response

is slightly slower, likely due to the actuator saturation constraints. As an example of the

response to sudden inputs, we excited the system with a periodic switching signal between

two different formations, the one specified by the positions in Figure 4.1 and a new one

that resembles a inscribed circle, shown in Figure 4.11a. The period of the switching signal

was 50 s, we show the graph of x and y trajectories in Figure 4.11b. The system reaches

zero error after settling in each formation.

TABLE 4.2. Frequency Response Characteristics - Butterfly Topology of 12
Agents

Pole Damping Frequency Time Constant
(rad/seconds) (seconds)

-1.43e-01 + 1.83e-01i 6.16e-01 2.32e-01 6.9
-2.06e-01 + 1.94e-01i 7.27e-01 2.83e-01 4.86
-2.25e-01 + 3.23e-02i 9.90e-01 2.27e-01 4.44
-2.30e-01 + 2.90e-34i 1.00e+00 2.30e-01 4.35
-2.31e-01 + 3.37e-02i 9.90e-01 2.34e-01 4.33
-2.33e-01 - 3.37e-33i 1.00e+00 2.33e-01 4.28
-2.73e-01 + 5.72e-10i 1.00e+00 2.73e-01 3.67
-2.73e-01 - 5.72e-10i 1.00e+00 2.73e-01 3.67
-2.73e-01 + 6.33e-10i 1.00e+00 2.73e-01 3.67
-2.73e-01 - 1.86e-10i 1.00e+00 2.73e-01 3.67
-6.62e-01 + 9.17e-01i 5.85e-01 1.13e+00 1.51
-7.13e-01 + 7.71e-01i 6.79e-01 1.05e+00 1.40
-7.99e-01 + 7.84e-11i 1.00e+00 7.99e-01 1.25
-7.99e-01 - 5.96e-10i 1.00e+00 7.99e-01 1.25
-7.99e-01 + 6.07e-10i 1.00e+00 7.99e-01 1.25
-7.99e-01 - 1.72e-10i 1.00e+00 7.99e-01 1.25
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FIGURE 4.9. Global consensus - convergence of agent states x and y.

62



www.manaraa.com

FIGURE 4.10. Square formation - 12 agents trajectory tracks.
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(a) Directed butterfly topology - circle-like formation of 12 agents.

(b) Switching formation shape - X and Y trajectories, 1
50 Hz.

FIGURE 4.11. Circle-like formation shape and state response.
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4.2.4 Dynamic Formation Keeping

To display the bounded velocity error of the formation to constant velocity inputs,

we enhance the constant formation forcing function with a time-dependent periodic term

to dynamically scale the formation shape. Using a triangle wave of amplitude α and fre-

quency ωscale, the scaling of the formation terms is done uniformly across all the agents.

The scaling function is show in Equation (4.5).

ϕxx(t) = ϕx + ϕxα triangle(t, ωscale)

ϕyy(t) = ϕy + ϕyα triangle(t, ωscale)
(4.5)

The response of the system and the error with respect to the inputs are shown in Figure

4.12, we see a steady state relative error of less than 3% of the desired dynamically scaled

formation, with zero error at the zero velocity points. Although there is a time-varying

non-zero relative error, the formation shape is retained before, during and after scaling.

This behavior is also seen when the formation shape is rotated about its centroid, ϕ̄x, ϕ̄y

with initial heading θ0 with the forcing function in Equation (4.6).

ϕxxj(t) = α
(
(ϕxj − ϕ̄x)cos(ωrt − θ0) − (ϕyj − ϕ̄y)sin(ωrt − θ0)

)
ϕxxj(t) = α

(
(ϕxj − ϕ̄x)sin(ωrt − θ0) + (ϕyj − ϕ̄y)cos(ωrt − θ0)

) (4.6)

The steady-state relative error to the sinusoid input with frequency 0.01Hz is time-varying

and periodic, with a maximum value of 6% error. The error and a top view of the trajec-

tory tracks can be seen in Figure 4.13. From the response, we see that the agents in the

formation settle to a circular trajectory with constant radius, the radius of each circle is

within 1% of the distance from the centroid of the static formation to each agents position,

as seen in Figure 4.14.
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FIGURE 4.12. Dynamic formation - linear scaling.
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FIGURE 4.13. Dynamic formation - virtual structure rotation about centroid.
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FIGURE 4.14. Dynamic formation - distance to formation centroid.

4.2.5 Formation Trajectory Tracking

When defining the inter-agent distances with respect to the formation centroid, a

desired trajectory factor in the form of Equation (3.37) can be used to guide the entire

formation centroid to a trajectory. We use Bernoulli’s Lemniscate to generate a persistent

cartesian parametric trajectory for the consensus control system in terms of time, similar

to the formation dynamic formation keeping factors. The desired trajectory is expressed

as:

xd(t) = α
√

2 cos (ωdynt)
sin (ωdynt)2 + 1

yd(t) = α
√

2cos (ωdynt) sin (ωdynt)
sin (ωdynt)2 + 1

(4.7)

The response of the system under the lemniscate excitation may exceed the saturation ve-

locity limit of the actuators, this drove selection of the scaling factor to be α = 2 m and

ωdyn = 0.005Hz. The trajectory tracks of the formation centroid and the desired trajectory

can be seen in Figure 4.16. The response of the centroid of the formation with respect to
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the desired trajectory has a non constant relative tracking error of less than 7.5% and an

RMS error of 3.33%. The response of the system and the relative percent errors in the x, y

coordinates can be seen in Figure 4.16.

4.3 Model Validation Using Monte Carlo Methods

Due to the introduction of the non-linear predictor and the saturation effects into

the plant, we cannot truly assert that the system behaves exactly as a linear system, and

thus, the analysis of the marginal stability points with respect to time delays may not

be an accurate representation of the stability of the actual system. In order to establish

whether the assessment is correct, we randomly sample the delay space in the region close

to the stability bounds found by the CTCR method and simulate the unforced consensus

system at these points. The initial conditions of the agents are also selected at random,

for each run, in the unit square centered at the origin. We selected 500 points in the delay

space, the sampled points and the histogram of the distributions can be found in Figure

4.17. Introducing the marginal stability points found by using the CTCR algorithm, the

points were classified based on whether they corresponded to points within a stable or un-

stable region. Using this classification, the probabilities of finding a unstable point in the

sampled set is Ps = 0.374, conversely, the probability of finding a stable point Pu = 0.626.

After performing the simulation, the proportion of points that were found to be stable was

Pss = 0.3580, representing a 4% difference in the expected result. The simulated classifi-

cation of the points and aggregated responses of the simulated system are shown in Fig-

ures 4.18a and 4.18b. Red crosses correspond to unstable points, the exact marginal stabil-

ity bounds found by the CTCR method are shown as red triangle markers and the stable

points are shown as blue circles.
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FIGURE 4.15. Formation tracking - centroid error and trajectory tracks.
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FIGURE 4.16. Formation tracking - system response and distance relative to
centroid.
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FIGURE 4.17. Monte Carlo simulation - sampling of delay space.
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(a) Monte Carlo simulation - sampled point classification.

(b) Monte Carlo simulation - system responses.

FIGURE 4.18. Stability comparison of linear system analysis with sampled
system - response classification.
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4.4 Conclusion

The approach developed in Chapter 3 to analyze and design a robust consensus for-

mation proportional-derivative control scheme for input-output linearizable non-holonomic

systems in the presence of multiple time delays has been implemented and verified for sam-

ple communication topologies. The consensus control architecture was augmented to sup-

port the analysis of systems with "physical" leader agents, and the architecture was shown

to solve the consensus problem by analyzing the spectrum of the communication and sens-

ing matrices. The special case of self-sensing delays for formations of non-holonomic agents

was considered for the first time in literature and with the introduction of a non-linear pre-

dictor, the performance of the non-linear system was found to be acceptable and compa-

rable with that of the linearized system, as shown in Section 4.3. The results presented

in Figure 3.5 showed that in the presence of self-sensing and communication time delays,

careful selection of the uniform controller gains can yield a system with infinite commu-

nication time delay margin. Results from linear control theory apply to the formation

scheme and considering the plant’s order, the steady-response characteristics are that of a

linear system under proportional-derivative control, with a zero steady-state error for step

inputs, and bounded errors for ramp response. In addition to this, the formation shape

specification methodology introduced in Equation (3.31) was shown to be convenient in

the definition of static and dynamic formation shapes, specially when defined in terms of

the centroid of the formation. For formations with the presence of a physical leader, ex-

citing the leader with a persistent trajectory results in the trajectory tracking of the en-

tire formation with performance characteristics typical of a type 1 system. The transient

response of the system was partially analyzed by using the QPmR method on the linear

system, and the results were confirmed by simulating the multiagent system with different

exogenous inputs corresponding to the dynamic formation keeping and dynamic formation

tracking terms.
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The simulation results introduced in this section have validated the design method-

ology introduced in this thesis and showed that the tools used to analyze the performance

of the system adequately and exhaustively describe the communication and sensing con-

straints of a formation of agents. Future work can include a complete frequency response

analysis of the multi-agent system and an assessment of the trajectory tracking perfor-

mance and the robustness characteristics of a formation under PID linear consensus con-

trol.
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APPENDIX:

COMPUTER CODE
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CTCR Method Mathematica Library

The CTCR algorithm was implemented in Wolfram Mathematica [40] in order to

efficiently analyze systems expressed symbolically. It uses a graphical approach to obtain

the zero-level contour so it is restricted to 2 delay systems. Example usage of the library is

provided in the example below.

nAgents = Range[1, 3];
(* Define graph of 3 agents *)
commEdges = {1 -> 2, 2 -> 1, 3 -> 1, 3 -> 2};
Gcomm = Graph[Join[nAgents], Join[commEdges], VertexLabels -> "Name"]
n = VertexCount[Gcomm];
DMcomm = PseudoInverse@DiagonalMatrix[VertexInDegree[Gcomm]];
selfEdges = # -> # & /@ nAgents;
Gself = Graph[selfEdges, VertexLabels -> "Name"];
DMself = IdentityMatrix[n];

Aplant = {{0, 1}, {0, 0}};
Gains = {{0, 0}, {Kp, Kd}};

(*Define Characteristic Equation 2 delay system *)
GetTF[A_, B_, C_] := (s*IdentityMatrix[Length[A]]) -

Chop@N[A] - ((Chop@N[B]*Exp[-t2*s]) + (Chop@N[C]*Exp[-t1*s]*
Exp[-t2*s]));

GetCharEQ[A_, B_, C_] := Det[GetTF[A, B, C]];

Id = IdentityMatrix[n];
Lpl = Transpose@AdjacencyMatrix@Gcomm;
SelfM = AdjacencyMatrix@Gself;
InformerM = DMcomm.Lpl;
{T, DInf} = JordanDecomposition[InformerM];

A = KroneckerProduct[Id, Aplant];
Bm = {{0, 0}, {0, 1}};
B1 = -KroneckerProduct[SelfM, Bm.Gains]
B2 = KroneckerProduct[InformerM, Bm.Gains]

Ay = SimilarityTransformation[A, Tf];
B1y = SimilarityTransformation[B1, Tf];
B2y = SimilarityTransformation[B2, Tf];
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(* Obtain list of second order factors *)
twoOrderIndices={1,3,5}
charEqns2nd =

GetCharEQ[GetBlock[Ay, #, 2], GetBlock[B1y, #, 2],
GetBlock[B2y, #, 2]] & /@ twoOrderIndices;

desiredGains={Kp -> 0.2, Kd -> 0.5};

(* Obtain Analysis results for first factor, 10 offspring curves *)
nn = 10;
analysisResults = CTCRAnalysis[(charEqns2nd[[1]]/.desiredGains), s, {t1,

t2}, c, nn];↪→

(* SDS Plot *)
sdsFunctions = analysisResults[["functions"]][["SDS"]];
sdsFunPlot =

ParametricPlot[sdsFunctions[[All, 1 ;; 2]], {c, 0, 1},
PlotRange -> {{0, 2*nn*Pi}, {0, 2*nn*Pi}},
GridLines -> {2*Pi*Range[0, nn, 1], 2*Pi*Range[0, nn, 1]},
GridLinesStyle -> Directive[Black, Dashed, Thick],
PerformanceGoal -> "Speed", Frame -> True, AspectRatio -> 1];

(* DS Plot *)
dsFunctions = analysisResults[["functions"]][["DS"]];
dsFunPlot =

ParametricPlot[dsFunctions[[All, 1 ;; 2]], {c, 0, 1},
PlotRange -> {{0, 10}, {0, 10}}, PerformanceGoal -> "Speed",
Frame -> True, FrameLabel -> {{"\[Tau]1", ""}, {"\[Tau]2", ""}}];

(* Root Tendecy Plot *)
rtgroups = GroupBy[analysisResults[["RT"]][["t1"]], #[[3]] &];
rtmap = Map[

ListPlot[rtgroups[#][[All, 1 ;; 2]],
PlotRange -> {{0, 10}, {0, 10}},
PlotStyle -> Switch[#, -1, Blue, 1, Red], AspectRatio -> 1,
ImageSize -> Large, Frame -> True] &, Keys[rtgroups]];
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TimeDelayLib - Mathematica [40] Library for TimeDelay System Analysis

BeginPackage["TimeDelayLib`"]

SimilarityTransformation::usage = "SimilarityTransformation[A,Tf] \
performs the similarity transformation of matrix A with matrix Tf"

GetBlock::usage = "GetBlock[A, n, size] returns blocks at diagonal \
position \"n\" of size \"size\" from block diagonalized matrix \"A\""

CTCRAnalysis::usage = "
CTCRAnalysis[charEqn, s, taus, c, numberOffspring, resolution:60,

splitCoefficient:1]↪→

Returns an association in the form of:
Association[

\"points\" -> Association[
\"SDS\" -> {{v1,v2,omega}},
\"DS\"->{{t1,t2,omega}}}
],

\"functions\" -> Association[
\"SDS\" -> InterpolationFunction[],
\"DS\" -> InterpolationFunction[]
]

\"RT\" -> Association[
\"t1\"->{{t1,t2,RT}},
\"t2\" -> {{t1,t2, RT}}
]

]
""

FindKernelSDS::usage =
"FindKernelSDS[chareq,s,taus,resolution_:60,recursion_:2] returns a
nested list of lists of length 3 corresponding to the Kernel Curves
of characteristic equation \"chareq\", with laplace variable \"s\" a
list of a maximum size of 2 time delays \"taus\={t1,t2}\"."

propagateSDS::usage = "propagateSDS[kernList, n] generates the
offspring curves from a list of points defining the kernel \"kernList\" in

SDS space."↪→

transformSDSToDS::usage = "transformSDSToDS[kernList,n] generates the
offspring curves in DS space from a list of points defining the
kernel \"kernList\" in SDS space by performing a point-wise
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transformation."

RootTendency::usage = "RootTendency[a,s,taudir,taus,ptz] computes the
root tendency of characteristic equation \"a\" with Laplace variable \"s\",

along direction \"taudir\= 1,..,n\" corresponding to the index↪→

of time-delay list \"taus\"={t1,t2,..,tn}"

RealJordanDecomposition::usage = ""
SortedJordanDecomposition::usage = ""

Begin["`Private`"]
SimilarityTransformation[A_, Tf_] := Inverse[Tf].A.Tf;
GetBlock[A_, n_, size_] :=Take[A, {n, n + (size - 1)}, {n, n + (size -

1)}];↪→

GetReal[x_] := ComplexExpand[Re[x]];
GetIm[x_] := ComplexExpand[Im[x]];

CTCRAnalysis[eqn_, s_, taus_, c_, nn_: 5, res_: 60, coff_: 1] :=
Module[{kernelSDS, kernelDS, toCurves, sortedCurvesDS,

sortedCurvesSDS, kernelDSInterpolatingFunctions,
kernelSDSInterpolatingFunctions, kernelDSFunctions,
kernelSDSFunctions, propagationVector, dsFunctions, sdsFunctions,
offSDS, offDS, RT},

toCurves[ptz_, cutoff_] :=
Split[ptz, EuclideanDistance[#, #2] < cutoff &];

kernelSDS = FindKernelSDS[eqn, s, taus, res];
If[SameQ[kernelSDS, {}], Return[None], None];
kernelDS = SDS2Tau[kernelSDS];
sortedCurvesSDS = toCurves[kernelSDS, coff];
sortedCurvesDS = toCurves[kernelDS, coff];
kernelSDSInterpolatingFunctions =
Map[Quiet@

Interpolation[
Transpose[{N@Range[0, 1, 1/(Length[#] - 1)], #}]] &,

sortedCurvesSDS];
kernelDSInterpolatingFunctions =
Map[Quiet@

Interpolation[
Transpose[{N@Range[0, 1, 1/(Length[#] - 1)], #}]] &,

sortedCurvesDS];
kernelSDSFunctions =
Map[kernelComponents[#, c] &, kernelSDSInterpolatingFunctions];
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kernelDSFunctions =
Map[kernelComponents[#, c] &, kernelDSInterpolatingFunctions];

propagationVector =
Flatten[Table[{i, j}, {i, 0, nn}, {j, 0, nn}], 1];

dsFunctions =
Flatten[Map[propagateDS[#, propagationVector] &,

kernelDSFunctions], 1];
sdsFunctions =
Flatten[Map[propagateSDS[#, propagationVector] &,

kernelSDSFunctions], 1];
offSDS =
Flatten[Map[propagateSDS[#, propagationVector] &, kernelSDS], 1];

offDS =
Flatten[Map[propagateDS[#, propagationVector] &, kernelDS], 1];

RT = Association@
Map[String@# -> RootTendency[eqn, s, #, taus, offDS] &, taus];

Return[
Association[
"points" -> Association["SDS" -> offSDS, "DS" -> offDS],
"functions" ->
Association["SDS" -> sdsFunctions, "DS" -> dsFunctions],

"RT" -> RT]];
];

char2KernelFn[chareq_, s_, taus_] :=
Module[{toHT, htPolyCoeffs, realPoly, imagPoly, ZkToVk,
HalfAngleTanRl, tau2Z, halfSub, zi, CoeffsToPol, zs, rts,
fn, \[Omega]}, zi[i_] := Symbol["z" <> ToString@i];
\[Omega] = Symbol["\[Omega]"];
halfSub = {Cos[x_] :> (1 - Tan[x/2]^2)/(1 + Tan[x/2]^2),
Sin[x_] :> (2 Tan[x/2])/(1 + Tan[x/2]^2)};
tau2Z[taus2_] :=
Table[Tan[taus2[[i]] \[Omega]/2] -> zi[i], {i, Length@taus2}];
HalfAngleTanRl[eqn_,
taus2_] := ((TrigExpand[

ExpToTrig[PowerExpand[eqn, taus] /. {s :> \[Omega] I}]]) /.
halfSub) /. tau2Z[taus2];

ZkToVk[zk_, vk_] :=
Table[zk[[i]] -> Tan[vk[[i]]/2], {i, Length[vk]}];
CoeffsToPol[l_, sym_] := sym^Range[0, Length[l] - 1].l;
toHT = Numerator@Together[HalfAngleTanRl[chareq, taus]];
htPolyCoeffs = CoefficientList[toHT, \[Omega]];
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realPoly = CoeffsToPol[GetReal[htPolyCoeffs], \[Omega]];
imagPoly = CoeffsToPol[GetIm[htPolyCoeffs], \[Omega]];
zs = zi /@ Range[Length@taus];
rts = Resultant[realPoly, imagPoly, \[Omega],
Method -> "Subresultants"];
fn[vs_] := rts /. (ZkToVk[zs, vs]);
Return[fn]

]

PolySurf[chareq_, nparm_, resolution_: 60, recursion_: 2] :=
Module[{toKern, kernRefl, rt, myPlot1, myPlot2, fn, res, v1, v2},
toKern[plt_] :=
Flatten[Cases[Normal@plt, Line[data_] :> data, -1], 1];
fn = chareq[{v1, v2}];
rt = Power[#[[1]], #[[2]]] & /@ Rest@FactorList[fn];
myPlot1 =
RegionPlot[

chareq[{v1, v2}] <= 0., {v1, 0., 2. Pi}, {v2, 0., 2. Pi},
PlotPoints -> resolution, MaxRecursion -> 3];

myPlot2 :=
Show[ContourPlot[# == 0, {v1, 0, 2 Pi}, {v2, 0, 2 Pi},

Contours -> {0}, Exclusions -> None, PlotPoints -> resolution,
MaxRecursion -> 3, PerformanceGoal -> "Quality"] & /@ rt];

myPlot1 =
If[Length@Flatten@toKern@myPlot1 <= 3, myPlot2, myPlot1];
res = toKern@myPlot1;
Return[res];
];

FindKernelSDS[chareq_, s_, taus_, resolution_: 60, recursion_: 2] :=
FindKernelSDS[chareq, s, taus, resolution, recursion] =
Module[{dsRoots, sdsBounds, EvalCharSDS, FindSDSOmegas,

commonRoots, \[Omega], repl},
FindSDSOmegas[eqn_, vs_] :=

Module[{subl, res},
subl = GetReal[
Select[Flatten[Solve[EvalCharSDS[eqn, vs] == 0, \[Omega]],

1][[All, 2]], (Abs@Re@# > 0 && Abs@Im@# < 0.0001) &]];
res =
If[Length[subl] > 0, Map[{vs[[1]], vs[[2]], #} &, subl], {}];
Return[res];];

EvalCharSDS[eqn_, vs_] :=
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Module[{rule},
rule = Map[(\[Omega] taus[[#]] -> vs[[#]]) &,
Range[Length@vs]];
Return[eqn /. {s -> \[Omega] I} /. rule]];

commonRoots = char2KernelFn[chareq, s, taus];
sdsBounds =

PolySurf[commonRoots, Length@taus, resolution, recursion];
Return[

Select[Flatten[Join[FindSDSOmegas[chareq, #] & /@ sdsBounds], 1],
UnsameQ[#, {}] &]]];

propagateSDS[fn_,
list_] := {(fn[[1]] + 2 Pi #[[1]]), (fn[[2]] + 2 Pi #[[2]]),

Abs@fn[[3]]} & /@ list;

propagateDS[fn_,
list_] := {(fn[[1]] + 2 Pi #[[1]]/Abs@fn[[3]]), (fn[[2]] +

2 Pi #[[2]]/Abs@fn[[3]]), Abs@fn[[3]]} & /@ list;

SDS2Tau[points_] :=
Map[{#[[1]]/#[[3]], #[[2]]/#[[3]], #[[3]]} &, points];

kernelComponents[fun_, c_] := Indexed[fun[c], #] & /@ Range[3];

transformSDSToDS[fn_,
list_] := {(fn[[1]] + 2 Pi #[[1]])/

Abs@fn[[3]], (fn[[2]] + 2 Pi #[[2]])/Abs@fn[[3]],
Abs@fn[[3]]} & /@ list;

RootTendency[equation_, s_, taudir_, taus_, ptz_] :=
Module[{totalD, solExpr, sss},
SetAttributes[Evaluate@Select[taus, UnsameQ[#1, taudir] &],
Constant];
totalD = Dt[equation == 0, taudir];
solExpr = Dt[s, taudir] /. Solve[totalD, Dt[s, taudir]];
solExpr =
solExpr /. {s -> I*ptz[[All, 3]],

Sequence @@ MapIndexed[#1 -> ptz[[All, Sequence @@ #2]] &, taus]};
Transpose[{ptz[[All, 1]], ptz[[All, 2]], Sign[Re[solExpr[[1]]]]}]]

End[]
EndPackage[]
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